## Section 6.1 The Greatest Common Factor and Factoring by Grouping

## Greatest Common Factor (GCF):

$>$ The GCF is an expression of the highest degree that divides each term of the polynomial.
$>$ The variable part of the greatest common factor always contains the smallest power of a variable that appears in all terms of the polynomial.

## Finding GCF

$>$ Step 1: Find the prime factorization of all integers and integer coefficients
$>$ Step 2: List all the factors that are common to all terms, including variables
$>$ Step 3: Choose the smallest power for each factor that is common to all terms
> Step 4: Multiply these powers to find the GCF
NOTE: If there is no common prime factor or variable, then the GCF is 1
(Example) Find the GCF for the following set of algebraic terms: $\left\{30 x^{4} y, 45 x^{3} y, 75 x^{5} y^{2}\right\}$
$30 x^{4} y=2 \cdot 3 \cdot 5 \cdot x \cdot x \cdot x \cdot x \cdot y=2 \cdot 3 \cdot 5 \cdot x^{4} y$
$45 x^{3} y=3 \cdot 3 \cdot 5 \cdot x \cdot x \cdot x \cdot y=3^{2} \cdot 5 \cdot x^{3} y$
$75 x^{5} y^{2}=3 \cdot 5 \cdot 5 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y \cdot y=3 \cdot 5^{2} \cdot x^{5} y^{2}$
Therefore, GCF is $3 \cdot 5 \cdot x^{3} \cdot y=15 x^{3} y$


## ¿ Negative GCF?

> In my opinion, we do not need to factor out a negative GCF
$>$ Factoring out a negative GCF is exactly same as factoring out GCF, but last step.

* Step 1: Find the prime factorization of all integers and integer coefficients
* Step 2: List all the factors that are common to all terms, including variables
* Step 3: Choose the smallest power of each factor that is common to all terms
* Step 4: Multiply these powers to find the GCF
* Step 5: Put negative sign in front of the GCF

Factoring by Grouping will be discussed with examples

## Exercises

Find the greatest common factor of the following list of terms.
$18 \mathrm{y}, 8 \mathrm{y}^{4}$, and $-10 \mathrm{y}^{5}$
The greatest common factor is $\|$
(Solution 1)
Step 1: Prime Factorization (ignore signs)

$$
\begin{aligned}
& 18 y=2 \cdot 3 \cdot 3 y=2 \cdot 3^{2} y \\
& 8 y^{4}=2 \cdot 2 \cdot 2 y^{4}=2^{3} y^{4} \\
& 10 y^{5}=2 \cdot 5 y^{5}=2 \cdot 5 y^{5}
\end{aligned}
$$

Step 2: List all factors that are common to all terms
Common factors to all are 2 and $y$
Step 3: Choose the smallest power
The smallest power for 2 is 1
The smallest power for $y$ is 1
So, the GCF is $2^{1} \cdot y^{1}=2 y$

## Section 6.1 The Greatest Common Factor and Factoring by Grouping

Factor the polynomial using the greatest common factor.
If there is no common factor other than 1 and the polynomial cannot be factored, so state.

$$
6 x^{2}-2 x^{4}
$$

Select the correct choice below and fill in any answer boxes in your choice.

$$
\text { A. } \quad 6 x^{2}-2 x^{4}=\square
$$

B. The polynomial cannot be factored.

Factor the polynomial using the greatest common factor.
If there is no common factor other than 1 and the polynomial cannot be factored, so state.

$$
7 x^{4}-21 x^{3}+35 x^{2}
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
OA.

$$
7 x^{4}-21 x^{3}+35 x^{2}=\square
$$ (Factor completely.)

OB
The polynomial cannot be factored.

Factor the polynomial using the greatest common factor.
If there is no common factor other than 1 and the polynomial cannot be factored, so state.

$$
27 x^{2}-29
$$

Select the correct choice below and fill in any answer boxes within your choice.$27 \mathrm{x}^{2}-29=$B. The polynomial cannot be factored.
(Solution 2)
Step 1: Prime Factorization (ignore signs)

$$
\begin{aligned}
& 6 x^{2}=2 \cdot 3 x^{2} \\
& 2 x^{4}=2 \cdot x^{4}
\end{aligned}
$$

Step 2: List all factors that are common to all terms Common factors to all are 2 and $x$
Step 3: Choose the smallest power
The smallest power for 2 is 1
The smallest power for $x$ is 2
So, the GCF is $2^{1} \cdot x^{2}=2 x^{2}$
Factoring out GCF

$$
\begin{aligned}
6 x^{2}-2 x^{4} & =2 x^{2}\left(3-x^{2}\right) \\
\frac{6 x^{2}}{2 x^{2}} & =3, \quad \frac{-2 x^{4}}{2 x^{2}}=-x^{2}
\end{aligned}
$$

## (Solution 3)

Step 1: Prime Factorization (ignore signs)

$$
\begin{aligned}
& 7 x^{4}=7 x^{4} \\
& 21 x^{3}=3 \cdot 7 x^{3} \\
& 35 x^{2}=5 \cdot 7 x^{2}
\end{aligned}
$$

Step 2: List all factors that are common to all terms Common factors to all are 7 and $x$.
Step 3: Choose the smallest power
The smallest power for 7 is 1
The smallest power for $x$ is 2
So, the GCF is $7^{1} \cdot x^{2}=7 x^{2}$
Factoring out GCF

$$
\begin{gathered}
7 x^{4}-21 x^{3}+35 x^{2}=7 x^{2}\left(x^{2}-3 x+5\right) \\
\frac{7 x^{4}}{7 x^{2}}=x^{2}, \frac{-21 x^{3}}{7 x^{2}}=-3 x, \frac{35 x^{2}}{7 x^{2}}=5
\end{gathered}
$$

## (Solution 4)

Step 1: Prime Factorization (ignore signs)

$$
27 x^{2}=3 \cdot 3 \cdot 3 x^{2}=3^{3} x^{2}
$$

$29=29$ because 29 is prime number
Step 2: List all factors that are common to all terms
There is no common factor.
Therefore, $27 x^{2}-29$ cannot be factored. or $27 x^{2}-29$ is prime.

## Section 6.1 The Greatest Common Factor and Factoring by Grouping

Factor the following polynomial using the negative of the greatest common factor.

$$
-4 x^{4}+24 x^{3}+20 x^{2}
$$

Select the correct choice below and if necessary,
fill in the answer box to complete your choice.
A. $-4 \mathrm{x}^{4}+24 \mathrm{x}^{3}+20 \mathrm{x}^{2}=\square$

BB. The polynomial cannot be factored.

Factor the following polynomial using the negative of the greatest common factor.

$$
-12 a^{3} b^{2}+16 a b
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

$$
-12 a^{3} b^{2}+16 a b=\square
$$

○B.
B. The polynomial cannot be factored.
(Solution 5)
Step 1: Prime Factorization (ignore signs)

$$
\begin{aligned}
& 4 x^{4}=2 \cdot 2 x^{4}=2^{2} x^{4} \\
& 24 x^{3}=2 \cdot 2 \cdot 2 \cdot 3 x^{3}=2^{3} \cdot 3 x^{3} \\
& 20 x^{2}=2 \cdot 2 \cdot 5 x^{2}=2^{2} \cdot 5 x^{2}
\end{aligned}
$$

Step 2: List all factors that are common to all terms
Common factors to all are 2 and $x$.
Step 3: Choose the smallest power
The smallest power for 2 is 2
The smallest power for $x$ is 2
GCF $=2^{2} \cdot x^{2}=4 x^{2} \Rightarrow$ the negative GCF is $\mathbf{- 4} \boldsymbol{x}^{2}$ Factoring out the negative GCF

$$
\begin{array}{r}
-4 x^{4}+24 x^{3}+20 x^{2}=-4 x^{2}\left(x^{2}-6 x-5\right) \\
\frac{-4 x^{4}}{-4 x^{2}}=x^{2}, \frac{24 x^{3}}{-4 x^{2}}=-6 x, \frac{20 x^{2}}{-4 x^{2}}=-5
\end{array}
$$

(Solution 6)
Step 1: Prime Factorization (ignore signs)

$$
\begin{aligned}
& -12 a^{3} b^{2}=2 \cdot 2 \cdot 3 a^{3} b^{2}=2^{2} \cdot 3 a^{3} b^{2} \\
& 16 a b=2 \cdot 2 \cdot 2 \cdot 2 a b=2^{4} a b
\end{aligned}
$$

Step 2: List all factors that are common to all terms Common factors to all are $2, a$, and $b$.
Step 3: Choose the smallest power
The smallest power for 2 is 2
The smallest power for $a$ is 1
The smallest power for $b$ is 1
GCF $=2^{2} a b=4 a b \Rightarrow$ the negative GCF is $\mathbf{- 4 a b}$
Factoring out the negative GCF

$$
\begin{gathered}
-12 a^{3} b^{2}+16 a b=-4 a b\left(3 a^{2} b-4\right) \\
\frac{-12 a^{3} b^{2}}{-4 a b}=3 a^{2} b, \frac{16 a b}{-4 a b}=-4
\end{gathered}
$$

## Factor the following polynomial using the

 greatest common binomial factor.$$
12 x(x+y)-(x+y)
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
OA.
$12 \mathrm{x}(\mathrm{x}+\mathrm{y})-(\mathrm{x}+\mathrm{y})=\square$ (Factor completely.)
©B. The polynomial cannot be factored.
(Solution 7)
Step 1: Prime Factorization (ignore signs)
$12 x(x+y)=2 \cdot 2 \cdot 3 x(x+y)=2^{2} \cdot 3 x(x+y)$
$(x+y)=(x+y)$ since $(x+y)$ is prime
Step 2: List all factors that are common to all terms Common factors to all are $(x+y)$.
Step 3: Choose the smallest power
The smallest power for $(x+y)$ is 1
So, the GCF is $(x+y)$
Factoring out GCF

$$
\begin{gathered}
12 x(x+y)-(x+y)=(x+y)(12 x-1) \\
\frac{12 x(x+y)}{x+y}=12 x ; \frac{-(x+y)}{x+y}=-1
\end{gathered}
$$

## Section 6.1 The Greatest Common Factor and Factoring by Grouping

Factor the following expression by grouping.

$$
x^{2}+8 x+9 x+72
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. $\quad x^{2}+8 x+9 x+72=\square$ (Factor completely.)

BB. The polynomial cannot be factored.

Factor the following expression by grouping.

$$
x^{3}-7 x^{2}+9 x-63
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. $x^{3}-7 x^{2}+9 x-63=\square$ (Factor completely.)
B. The polynomial cannot be factored.

Factor the following expression by grouping.

$$
5 x^{3}-2 x^{2}-25 x+10
$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

$$
O_{A}^{A}
$$

$$
5 x^{3}-2 x^{2}-25 x+10=\square \text { (Factor completely.) }
$$

$\bigcirc$ B. The polynomial cannot be factored.

## (Solution 10)

Step 1: Count the number of terms.
$5 x^{3}-2 x^{2}-25 x+10$ has four terms. Thus, factoring by grouping.
Step 2: Arrangement
Since $5 x^{3}-2 x^{2}-25 x+10$ has one variable, we arrange the expression in descending order. $5 x^{3}-2 x^{2}-25 x+10$ is in descending order.
Step 3: Grouping by dividing terms evenly.
$5 x^{3}-2 x^{2}-25 x+10$ has four terms, so two
terms in each group. $\left(5 x^{3}-2 x^{2}\right)-(25 x-10)$
Step 4: Factoring out GCF from each group

$$
\begin{aligned}
& \left(5 x^{3}-2 x^{2}\right)-(25 x-10) \\
= & x^{2}(5 x-2)-5(5 x-2) \\
= & (5 x-2)\left(x^{2}-5\right)
\end{aligned}
$$

